\qquad

1. Fill in all six phases changes by their names, from solid \leftrightarrow liquid, liquid \leftrightarrow gas, and solid \leftrightarrow gas

2. Indicate the "important" temperatures for water (at standard pressure), and all three phases.

3. A heating curve shows the specific \qquad associated with the different
\qquad
\qquad for any substance, as heat is \qquad .
4. A cooling curve shows the specific \qquad associated with the different
\qquad
\qquad for any substance, as heat is \qquad .
5. The necessary information for either a HEATING or COOLING curve includes the
\qquad point and the \qquad point.
6. \quad The melting point $=$ the \qquad point.
7. The boiling point $=$ the \qquad point.
8. We will draw the heating curve for water. Note: you can't start the graph at absolute zero! Start the graph above 0 Kelvin to start!

Think: Title, Y axis with units \& numbers, X axis with words only, choose a point to start, draw line segments, the last segment gets an arrow head, Add "dots" at each segment end point, Label dots $L \rightarrow R: A B C D E F$.
9. Fill in this chart to describe what's happening at each line segment

SEGMENT	TEMPERATURE CHANGE	KINETIC ENERGY CHANGE	POTENTIAL ENERGY CHANGE	PHASE OR PHASES PRESENT
AB				
BC				
CD				
DE				
EF				

10. Temperature is deemed hotter when the particles are moving \qquad .
11. Colder temperatures indicate that the substance's particles are moving \qquad .
12. The "energy of motion" is called \qquad energy.
13. Skip this one.
14. What ever the Temperature does, the Kinetic Energy \qquad .
15. If the temperature goes up, the kinetic energy \qquad .
16. If the temperature goes down, the kinetic energy \qquad .
17. If the temperature stays steady, the kinetic energy \qquad .
18. During a phase change on the heating curve, segment BC , heat energy is being added at a constant rate, but the temperature (and the Kinetic Energy) stay steady. The Law of Conservation of Energy says:

Energy cannot be created or destroyed in a chemical reaction, or during a physical change, but it can be transferred.

Potential Energy is the		Increasing PE
GAS	Highest POTENTIAL ENERGY	
LIQUID	Medium POTENTIAL ENERGY	Decreasing PE
SOLID	Lowest POTENTIAL ENERGY	

19. Which phase has the most potential energy? Solid Liquid Gas (circle)
20. Which phase has the LEAST potential energy? Solid Liquid Gas (circle)
21. During a phase change for $\mathrm{H}_{2} \mathrm{O}$, solid to liquid, energy is added, but the temperature remain at 273 Kelvin.

What energy increases during this phase change? \qquad
22. The ice has a \qquad potential energy, while the liquid has a \qquad PE.
23. Can both kinetic and potential energy change at the same time? \qquad
24. Draw the cooling curve for rubidium
cooling curve for rubidium

Think: Title, Y axis with units \& numbers, X axis with words only, choose a point to start, draw line segments, the last segment gets an arrow head, Add "dots" at each segment end point, Label dots $L \rightarrow R: A B C D E F$.
25. Fill in this chart to describe what's happening at each line segment

SEGMENT	TEMPERATURE CHANGE	KINETIC ENERGY CHANGE	POTENTIAL ENERGY CHANGE	PHASE OR PHASES PRESENT
AB				
BC				
CD				
DE				
EF				

Get this data before you begin then put in temperature	Metal	Freezing/melting point	Boiling/condensation point
	BISMUTH		

30. On one graph, draw both the heating curve for lead and the cooling curve for bismuth (!) Label both lines.

What are the characteristics of solids, liquids and gases?
31. True or False, nearly every substance can be a solid, liquid or a gas? True or False
32. An exceptions is \qquad , which is a mixed solid, but combusts before it melts. All elements and nearly all compounds can be at any phase with proper temperature and pressure conditions.
33. Where do we find most element melting points and boiling points? \qquad
34. Where do we find the freezing points and the condensing points if we need to know them? \qquad

35	Particle Attraction	Particle Movement	Particles are...	Relative Density	Compressibility
Solid					
Liquid					
Gas					

36. Draw the particle diagrams of a solid, liquid and a gas in the boxes below.

solid	liquid	gas

Gas or Air Pressure

37. Air and Gas Pressure is caused by the \qquad of the particles.
38. The more collisions the \qquad the pressure. If you put your balloon outside in the winter it shrinks. The cold atmosphere absorbs the energy out of the balloon gas, and the helium atoms slow down. Since they are slower, the collisions are both \qquad and
\qquad . This makes for \qquad pressure, which makes good kids cry.
39. If you bring the balloon into a warm house, the heat "recharges" the energy in the helium, causing both
\qquad and more \qquad , which expands the balloons and the kids \qquad again.

Gas (or air) pressure is measured in four units in chemistry. Most are weirdo, but you will learn them all. Take out table A. Write ALL four units equal to each other under table A (as shown in slides).
40. Normal or Standard Pressure is \qquad atmosphere, which is shortened to \qquad .
41. Or it's \qquad kilopascals. Normal is abbreviated as \qquad .
42. In America we use pounds per square inch units. Normal is \qquad .
43. Pressure was originally measured by a device called a
\qquad . Since they used mercury and a metric ruler, normal was originally determined to be
\qquad by a nice
guy named \qquad .

Air is always pressing on you, even if you don't feel it

A PHASE diagram will show the phase of a substance at a variety of temperatures and pressures. Let's label this phase diagram for water while we discuss it.

TITLE:

44. Point 1 is called \qquad
45. Point 2 is called \qquad
46. Point 3 is called \qquad
47. Point 4 is called \qquad
48. The dotted line represents \qquad
49. Draw in the arrows and ALL six phase change names now.

Take out Table H (for Happy).
50. The title for Table H is \qquad
51. The liquids are: \qquad , \qquad water, \qquad acid
52. Another name for ethanoic acid is \qquad or vinegar
53. Ethanol is \qquad
54. Propanone is a ketone. A similar, common, ketone is \qquad
55. Wata is \qquad
56. The Y axis scale in in \qquad , and each box is equal to \qquad
57. The X axis scale is in \qquad , and each box is equal to \qquad
58. There are 4 graphs on this table only to \qquad .

Promise to look at only \qquad graph at a time.
59. Vapor Pressure is

60. The can and this bottle are both examples of
\qquad

Heating them up could cause an
\qquad
due to the increasing \qquad pressure.
This pressure increases because heat turns the water into steam, with higher kinetic energy, causing stronger and more
particle \qquad

Let's assume the air pressure in the room is normal $(101.3 \mathrm{kPa})$. We open the bottle to drink, then reclose it to turn it into a closed system. At the top of the bottle is an air gap that ALSO now has normal pressure.

If you put the bottle down in lab and the room temperature is warmer than normal, say $25^{\circ} \mathrm{C}$, what extra pressure in the top of the bottle, on top of the existing normal pressure?

Let's look at table H! (at the water curve!)
61. What is the vapor pressure for water at $20^{\circ} \mathrm{C}$?
62. The pressure in this gap is now \sim \qquad
63. What is the vapor pressure if you raise the temp to $70^{\circ} \mathrm{C}$? \qquad
64. If the bottle is pressure rated to 165 kPa and you heat it up to $90^{\circ} \mathrm{C}$, what happens?
\qquad
\qquad

Let's look at these three SEALED bottles. Indicate the vapor pressures for each temperature.

Ethanol

Ethanoic Acid

Propanone
\qquad
\qquad
67. At $75^{\circ} \mathrm{C}$ \qquad
68. Which bottle would burst first if they are all heated up together slowly? \qquad
69. Once more, vapor pressure is described as:

Some liquids evaporate easier (\qquad VP) some liquids evaporate worse (\qquad VP)
70. Point 1 is called
71. Point 2 is called the
72. Point 3 is called the
73. Point 4 is called the
74. Point 5 is called the
75. Point 6 is called the

76. In fact, the curve labeled water represents \qquad the \qquad of water at different pressures.
77. What is the boiling point of ethanol at 70 kPa ? \qquad
Table H tells us the vapor pressure for these 4 liquids at different temperatures.
If you read the graph backwards. Table H also provides the boiling point of each liquid at any pressure you want it for.
78. ...What is the boiling point of ethanol at 60 kPa ? \qquad ${ }^{\circ} \mathrm{C}$

79 \qquad What is the boiling point of propanone at 70 kPa ? \qquad ${ }^{\circ} \mathrm{C}$
80. \qquad What is the boiling point of ethanol at 150 kPa ? \qquad ${ }^{\circ} \mathrm{C}$
81. \qquad What is the boiling point of water at 180 kPa ? \qquad ${ }^{\circ} \mathrm{C}$
82. What is the boiling point of ethanol at 30 kPa ? \qquad ${ }^{\circ} \mathrm{C}$

Table H can also tell us what phase the liquids are at. Pick a point, and determine if you are in front of the curve (exceeded the BP so gas phase) or behind the curve (not at the BP so liquid phase).
83. Mark point " A " at Normal pressure and $115^{\circ} \mathrm{C}$. What phase is water? SOLID LIQUID

GAS
84. Mark point " B " at 90 kPa and $95^{\circ} \mathrm{C}$, what phase is water? SOLID LIQUID GAS

85. At point 1 , what phase is propanone? \qquad
86. At point 2 , what phase is propanone? \qquad What phase is ethanol? \qquad
87. At point 3, what phase is water? \qquad What phase is ethanoic acid? \qquad
88. At point 4, what phase is ethanoic acid? \qquad What phase is ethanol? \qquad
89. At point 5, what phase is ethanol? \qquad What phase is water? \qquad
90. At point 6, what phase are all of these liquids? \qquad

Air and Gas Pressure Conversion Math (take out table A)

91. On a cold day the air pressure in Vestal is higher than normal (cold air is more dense and it "settles" onto the Earth a bit more than usual). The pressure registers at 1.20 atm . Convert 1.20 atm into kilopascals.
92. Convert 145 kPa into atmospheres.
93. Convert 905 mm Hg into kPa .
94. Convert 31.0 kPa (pressure atop Mr. Everest) into atmospheres.
95. Convert the high pressure of 2.68 atm into pounds per square inch.
96. The maximum pressure inside an official NBA basketball is 8.50 psi , convert that to mm of Hg .

97. The Kinetic Molecular Theory of Gases (KMT)

What are gases, how do they stay gases, how do we understand gases?

A	
B	
C	
D	
E	
F	
G	

